Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293444

RESUMO

Stroke can be followed by immediate severe headaches. As headaches are initiated by the activation of trigeminal meningeal afferents, we assessed changes in the activity of meningeal afferents in mice subjected to cortical photothrombosis. Cortical photothrombosis induced ipsilateral lesions of variable sizes that were associated with contralateral sensorimotor impairment. Nociceptive firing of mechanosensitive Piezo1 channels, activated by the agonist Yoda1, was increased in meningeal afferents in the ischemic hemispheres. These meningeal afferents also had a higher maximal spike frequency at baseline and during activation of the mechanosensitive Piezo1 channel by Yoda1. Moreover, in these meningeal afferents, nociceptive firing was active during the entire induction of transient receptor potential vanilloid 1 (TRPV1) channels by capsaicin. No such activation was observed on the contralateral hemi-skulls of the same group of mice or in control mice. Our data suggest the involvement of mechanosensitive Piezo1 channels capable of maintaining high-frequency spiking activity and of nociceptive TRPV1 channels in trigeminal headache pain responses after experimental ischemic stroke in mice.


Assuntos
Acidente Vascular Cerebral , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Projetos Piloto , Capsaicina/farmacologia , Cefaleia/patologia , Dor , Canais de Cátion TRPV , Canais Iônicos
2.
Stroke ; 53(10): 3192-3201, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36111544

RESUMO

BACKGROUND: Species-specific differences in astrocytes and their Alzheimer disease-associated pathology may influence cellular responses to other insults. Herein, human glial chimeric mice were generated to evaluate how Alzheimer disease predisposing genetic background in human astrocytes contributes to behavioral outcome and brain pathology after cortical photothrombotic ischemia. METHODS: Neonatal (P0) immunodeficient mice of both sexes were transplanted with induced pluripotent stem cell-derived astrocyte progenitors from Alzheimer disease patients carrying PSEN1 exon 9 deletion (PSEN1 ΔE9), with isogenic controls, with cells from a healthy donor, or with mouse astrocytes or vehicle. After 14 months, a photothrombotic lesion was produced with Rose Bengal in the motor cortex. Behavior was assessed before ischemia and 1 and 4 weeks after the induction of stroke, followed by tissue perfusion for histology. RESULTS: Open field, cylinder, and grid-walking tests showed a persistent locomotor and sensorimotor impairment after ischemia and female mice had larger infarct sizes; yet, these were not affected by astrocytes with PSEN1 ΔE9 background. Staining for human nuclear antigen confirmed that human cells successfully engrafted throughout the mouse brain. However, only a small number of human cells were positive for astrocytic marker GFAP (glial fibrillary acidic protein), mostly located in the corpus callosum and retaining complex human-specific morphology with longer processes compared with host counterparts. While host astrocytes formed the glial scar, human astrocytes were scattered in small numbers close to the lesion boundary. Aß (beta-amyloid) deposits were not present in PSEN1 ΔE9 astrocyte-transplanted mice. CONCLUSIONS: Transplanted human cells survived and distributed widely in the host brain but had no impact on severity of ischemic damage after cortical photothrombosis in chimeric mice. Only a small number of transplanted human astrocytes acquired GFAP-positive glial phenotype or migrated toward the ischemic lesion forming glial scar. PSEN1 ΔE9 astrocytes did not impair behavioral recovery after experimental stroke.


Assuntos
Doença de Alzheimer , Acidente Vascular Cerebral , Animais , Antígenos Nucleares/metabolismo , Astrócitos/patologia , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Humanos , Isquemia/metabolismo , Masculino , Camundongos , Rosa Bengala/metabolismo , Acidente Vascular Cerebral/patologia
3.
Int J Mol Sci ; 22(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546370

RESUMO

Microglia are involved in the post-stroke immunomodulation of brain plasticity, repair, and reorganization. Here, we evaluated whether adipose-tissue-derived mesenchymal stem cells (ADMSCs) and/or rehabilitation improve behavioral recovery by modulating long-term perilesional inflammation and creating a recovery-permissive environment in a rat model of ischemic stroke. METHODS: A two-way mixed lymphocyte reaction was used to assess the immunomodulatory capacity of ADMSCs in vitro. Two or 7 days after permanent middle cerebral artery occlusion (pMCAO), rats were intravenously administered ADMSCs or vehicle and housed in a standard or enriched environment (EE). Behavioral performance was assessed with a cylinder test, then we performed stereological and ImageJ/Fiji quantifications of ionized calcium-binding adaptor molecule 1 (Iba1) cells and blood-brain barrier (BBB) leakage. RESULTS: Human ADMSCs were immunosuppressive in vitro. The cylinder test showed partial spontaneous behavioral recovery of pMCAO rats, which was further improved by combined ADMSCs and housing in EE on days 21 and 42 (p < 0.05). We detected an ischemia-induced increase in numbers, staining intensity, and branch length of Iba1+ microglia/macrophages as well as BBB leakage in the perilesional cortex. However, these were not different among pMCAO groups. CONCLUSION: Combined cell therapy and rehabilitation additively improved behavioral outcome despite long-term perilesional microglia presence in stroke rats.


Assuntos
Barreira Hematoencefálica , Inflamação , Transplante de Células-Tronco Mesenquimais , Microglia , Acidente Vascular Cerebral/terapia , Animais , Isquemia Encefálica/etiologia , Infarto da Artéria Cerebral Média/complicações , Macrófagos , Masculino , Células-Tronco Mesenquimais , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral
4.
Front Neurol ; 10: 235, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972000

RESUMO

Background/Objective: Stroke is a leading global cause of adult disability. As the population ages as well as suffers co-morbidities, it is expected that the stroke burden will increase further. There are no established safe and effective restorative treatments to facilitate a good functional outcome in stroke patients. Cell-based therapies, which have a wide therapeutic window, might benefit a large percentage of patients, especially if combined with different restorative strategies. In this study, we tested whether the therapeutic effect of human adipose tissue-derived mesenchymal stem cells (ADMSCs) could be further enhanced by rehabilitation in an experimental model of stroke. Methods: Focal cerebral ischemia was induced in adult male Sprague Dawley rats by permanently occluding the distal middle cerebral artery (MCAO). After the intravenous infusion of vehicle (n = 46) or ADMSCs (2 × 106) either at 2 (n = 37) or 7 (n = 7) days after the operation, half of the animals were housed in an enriched environment mimicking rehabilitation. Subsequently, their behavioral recovery was assessed by a neurological score, and performance in the cylinder and sticky label tests during a 42-day behavioral follow-up. At the end of the follow-up, rats were perfused for histology to assess the extent of angiogenesis (RECA-1), gliosis (GFAP), and glial scar formation. Results: No adverse effects were observed during the follow-up. Combined ADMSC therapy and rehabilitation improved forelimb use in the cylinder test in comparison to MCAO controls on post-operative days 21 and 42 (P < 0.01). In the sticky label test, ADMSCs and rehabilitation alone or together, significantly decreased the removal time as compared to MCAO controls on post-operative days 21 and 42. An early initiation of combined therapy seemed to be more effective. Infarct size, measured by MRI on post-operative days 1 and 43, did not differ between the experimental groups. Stereological counting revealed an ischemia-induced increase both in the density of blood vessels and the numbers of glial cells in the perilesional cortex, but there were no differences among MCAO groups. Glial scar volume was also similar in MCAO groups. Conclusion: Early delivery of ADMSCs and combined rehabilitation enhanced behavioral recovery in an experimental stroke model. The mechanisms underlying these treatment effects remain unknown.

5.
Stem Cell Res Ther ; 6: 11, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25971703

RESUMO

INTRODUCTION: Intra-arterial cell infusion is an efficient delivery route with which to target organs such as the ischemic brain. However, adverse events including microembolisms and decreased cerebral blood flow were recently reported after intra-arterial cell delivery in rodent models, raising safety concerns. We tested the hypothesis that cell dose, infusion volume, and velocity would be related to the severity of complications after intra-arterial cell delivery. METHODS: In this study, 38 rats were subjected to a sham middle cerebral artery occlusion (sham-MCAO) procedure before being infused with allogeneic bone-marrow mesenchymal stem cells at different cell doses (0 to 1.0 × 10(6)), infusion volumes (0.5 to 1.0 ml), and infusion times (3 to 6 minutes). An additional group (n = 4) was infused with 1.0 × 10(6) cells labeled with iron oxide for in vivo tracking of cells. Cells were infused through the external carotid artery under laser Doppler flowmetry monitoring 48 hours after sham-MCAO. Magnetic resonance imaging (MRI) was performed 24 hours after cell infusion to reveal cerebral embolisms or hemorrhage. Limb placing, cylinder, and open field tests were conducted to assess sensorimotor functions before the rats were perfused for histology. RESULTS: A cell dose-related reduction in cerebral blood flow was noted, as well as an increase in embolic events and concomitant lesion size, and sensorimotor impairment. In addition, a low infusion velocity (0.5 ml/6 minutes) was associated with high rate of complications. Lesions on MRI were confirmed with histology and corresponded to necrotic cell loss and blood-brain barrier leakage. CONCLUSIONS: Particularly cell dose but also infusion velocity contribute to complications encountered after intra-arterial cell transplantation. This should be considered before planning efficacy studies in rats and, potentially, in patients with stroke.


Assuntos
Células da Medula Óssea/citologia , Embolia Intracraniana/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Comportamento Animal , Velocidade do Fluxo Sanguíneo , Encéfalo/metabolismo , Encéfalo/patologia , Tamanho Celular , Células Cultivadas , Infusões Intra-Arteriais , Fluxometria por Laser-Doppler , Imageamento por Ressonância Magnética , Masculino , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Wistar , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...